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Introduction 
For career astronauts and long-duration missions, the high-energy heavy-ion component of galactic 

cosmic rays may cause harmful radiobiological effects. To assess these effects, an accurate theoretical 
description of the transport of high-energy nuclei through spacecraft structures is being developed 
(ref. 1). Essential inputs to this transport theory are reaction and fragmentation cross sections for 
heavy-ion collisions at cosmic ray energies. 

In previous work, an optical model for composite particle scattering (refs. 2 through 7) had been 
solved to first order in the optical potential within the eikonal approximation to predict reaction and 
fragmentation cross sections but through indirect means. Here only the elastic channel in the coherent 
approximation, which neglects contributions of scattering to excited states with rescatterings to the 
ground state, is considered. The optical theorem allows for the calculation of the total cross section 
from the elastic amplitude, and the reaction cross section is then taken as the difference between the 
total and total elastic cross sections. F’ragmentation cross sections are obtained by distributing the 
reaction cross section between the various fragmentation channels (ref. 6 ) .  This method gives good 
agreement with experimental measurements for reaction cross sections, although some discrepancies 
are seen for fragmentation cross sections which may be due to neglecting the contribution of bound- 
state inelastic transitions to the reaction cross section and/or misunderstanding ablation effects. One 
advantage of this approach is that the only nuclear structure inputs needed are ground state matter 
densities which are accurately determined from parameterization of experimentally measured nuclear 
charge densities. 

The coherent approximation for the elastic channel and the distorted wave Born approximation 
(DWBA) for inelastic transitions represent lowest order solutions to coupled-channel equations derived 
in the optical model. In this work we consider methods for obtaining higher order solutions to the 
eikonal form of these coupled-channel equations. A nucleus will have an infinite number of levels for 
which nearly all excited state wave functions are poorly known but will represent necessary inputs 
for a complete solution to the coupled-channel equations. In the forward-scattering region, a limited 
number of low lying states may lead to a reasonable truncation of the infinite channel space for a light 
nucleus, although at high energies all nuclear levels will appear degenerate so that the accuracy of any 
channel truncation will depend on the strength and momentum dependence of the excited state wave 
functions. Alternatively, solutions exact through second or higher orders in the optical potential may 
be reexpressed using sum rules to incorporate pair or higher number correlation functions. Here the 
lack of knowledge of excited state wave functions is shifted to uncertainties in the correlation functions. 

In the next section we review the eikonal formalism (refs. 2 and 3). Following this we discuss 
several approaches for obtaining solutions to the coupled-channel scattering amplitudes. Analytic forms 
are obtained for the second-order optical potential (bordered interaction matrix), which we apply to 
calculate angular distributions and total cross sections for elastic and inelastic scattering of p on 12C 
and 4He on 12C. Comparisons are made between the first-order and second-order solutions. 

Eikonal Coupled-Channels Formalism 
In reference 2, a coupled-channel (Schroedinger) equation is obtained from a nonrelativistic multiple- 

scattering series for two composite particles through the use of an effective potential and the impulse 
and closure approximations. The coupled-channel equation relating the entrance channel to all excited 
states of the composite target and projectile particles is 

where the subscripts n and p label the eigenstates of projectile and target, respectively; k is the 
projectile momentum relative to the center of mass; @,,,, is the channel wave function; x is the projectile 
position vector relative to the target; A p  and AT are the projectile and target constituent numbers; 
and m is the constituent mass. The coupling potentials are of the form 



where g represents the internal nuclear wave function, and the effective potential is given by 

where t a j  is the two-body transition amplitude. Equation (1) represents the complete solution to the 
nucleus-nucleus scattering system within the high-energy approximations noted. 

Matrix notation is introduced by defining the wave vector, 

and the potential matrix 

where we have denoted the reduced mass factor by p~ and have arranged the elements of %(x) and 
U(x) in order of increasing levels of target, followed by projectile excitation. The coupled equations 
are then written in matrix form 

- 

(vz + k2) %(x) = U(X) %(x) 

The scattering amplitudes for all transitions, n, p to n', p', are the elements of the scattering amplitude 
matrix which is written 

f(q) = -8 1 e-ikf.xu(x) ~ ( x )  dx (7) 

q = k - k f  (8) 

where kf is the final projectile momentum and q the momentum transfer, 

In references 2 and 3, the eikonal approximation was applied to the coupled-channel formalism. 
In this forward-scattering Here we outline the derivation of T(q) in the eikonal approximation. 

approximation, the following boundary condition is imposed on the wave vector: 



where -z  is the direction of the beam source and 5 is a constant vector with a unit entry at the 
entrance channel and zero elsewhere. This boundary condition implies that no particles are scattered 
backward which is justified in high-energy scattering where forward scattering dominates. The wave 
vector is assumed to be of the form 

where s ( x )  is a phase matrix whose solution we seek. The boundary condition (ea. (9)) implies 

(11) 
lim - 

qx) = 0 
z + - m  

Substituting equation (10) into equation (6) with the approximations, 

and 

leads to the solution 

where we use a cylindrical coordinate system with cylinder axis along the beam direction such that 

x = b + z  (15) 

where b is the impact parameter vector. Finally, we ignore the longitudinal momentum transfer such 
that 

q - x = q .  b + O ( d 2 )  (16) 

where 0 is the scattering angle, which is assumed to be small. The result for the scattering amplitude 
matrix in the eikonal approximation follows as 

where the eikonal phase matrix is defined by 

-1 m -  
x(b) = - 1 U(b, z )  dz 

2k --oo 

and d2b indicates integration over polar coordinates in the plane perpendicular to the incident direction 
of the beam. 

We note that Feshbach and Hufner (ref. 8) have considered the eikonal approximation for coupled- 
channel equations for nucleon-nucleus scattering. Here the ansatz of equation (10) is replaced by one 
equivalent to 

- *(x) = ( - 1 )3'2 ~ ( ~ 1  ,ik.x$ 
2lr 

Feshbach and Hufner found that a solution such as equation (17) can be obtained only if the commutator 

[u(b, z ) ,  s_b, dz' n(b, z')] = 0 
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is fulfilled. Through consideration of the form of the matrix elements of n(x) in the momentum 
representation (see appendix A), we expect the condition given by equation (20) to be met in the limit 
when the longitudinal momentum transfer approaches zero. 

Approximate solutions to  the eikonal scattering amplitudes were discussed in reference 3. The exact 
solutions of these amplitudes have been hindered in the past by the mathematical difficulties inherent 
in identifying the elements of T(q) with the corresponding elements of x(b) because of the occurrence 
of the exponential of the matrix ix(b). To appreciate this difficulty, consider two matrices and B 
related by - 

B - 
G = e  

We may make an expansion such that 

B2 E3 
G = l + B = - + - +  . . .  

2! 3! 

and the difficulty in obtaining the elements of is now obvious because 
we must construct all the powers of B and then sum an infinite series for each element of E.  In a 
similar manner the expansion of exp(ix) reveals the infinite-order multiple scattering series, including 
excitation and deexcitation of projectile and target in the eikonal limit. The exponential of the phase 
matrix has effectively summed this infinite series. In the next section, we consider possible methods 
for identifying the elements of the eikonal scattering amplitude matrix. 

in terms of the elements of 

Methods of Solution for Eikonal Scattering Amplitudes 
In this section we compare several approaches for identifying the elements of the scattering 

amplitude matrix as given in equation (17). The Cayley-Hamilton theorem states that every square 
matrix satisfies its own characteristic equation. The characteristic equation for the eikonal phase matrix 
is given by the determinant equation 

- xi1 = o (21) 
where X represents the eigenvalues of x. For x of rank N ,  equation (21) represents an Nth  order 
polynomial in X which must also hold for x. Through this polynomial equation in X, higher order 
powers of X can be expressed in terms of lower order powers which could allow for the summation of 
the infinite-order expansion of exp(ix). We do not expect the Cayley-Hamilton theorem to lead to a 
straightforward numerical procedure for summation of this series for an arbitrary form for E. 

A second approach for summation of this infinite series is through a similarity transformation. That 
is, if the unitary matrix diagonalizes X such that (ref. 9) 

(22) 
-t-- - - 
A XA - W X e )  

where is a diagonal matrix with the eigenvalues Xe of 55 along its diagonal, then 

and we find 
- 
f(q) = 1 e-iq’b {A@) (ei’l(b)) xt (b) - I}  d2b (24) 

The solution for the elements of T(q) is now dependent on knowledge of the eigenvalues and eigenvectors 

are, in general, complex. A condition for a complex matrix to be similar to a 
diagonal matrix is that its real and imaginary parts be diagonalizable simultaneously, that is, that it 
be normal. This is equivalent to the commutation relation (ref. lo), 

of x. 
The elements of 

155, $1 = 0 
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In terms of real-space transition densities, the elements of x may be written (ref. 2 )  as 

X n p , n / p /  (b) 2k AT Jrn -00 dz / dx’ p,,,,! (x’) / dy pnn/ (x + x’ + y) t ( e ,  y) ( 2 6 )  

In appendix A we show that for transitions between states of discrete values of angular momentum the 
elements of x may be expressed in terms of reduced transition form factors, which are real, as 

where J p  = Jn - J,,I , JT = J,, - J,J ,  M p  = M n  - Mnr , and MT = M,, - Mp/ .  Because of the complex 
phase in equation ( 2 7 ) ,  the condition for diagonalization as given by equation (25 )  will not be fulfilled 
for general values of M p  and MT. 

Finally, we consider use of Sylvester’s theorem for identifying the elements of T(q). Sylvester’s 
theorem is based on the recognition that any polynomial relation that holds for a scalar variable will 
also be true for any square matrix. In particular (ref. l l ) ,  if we consider Lagrange’s interpolation 
formula to hold for a polynomial P of the square matrix B, where B has N distinct eigenvalues, 
choosing the interpolation coefficients to be the eigenvalues, Sylvester’s theorem states 

The extension of Sylvester’s theorem to the infinite series represented by exp(iX) depends on con- 
vergence conditions required for the exponential of a matrix (ref. 11) which we assume to be true. 
Then 

The extension to the case of degenerate roots is considered in reference 11. Here if s is the degeneracy 
of the root, then 

The solution that follows from application of Sylvester’s theorem offers the advantage that only the 
eigenvalues and not the eigenvectors of are needed and should lead to a straightforward numerical 
procedure for identifying the elements of T(q). From equation (30) we expect that this method will 
not be practical if a large degeneracy occurs. In the next section, we consider a bordered form for x 
where analytic methods allow us to solve for the form of the scattering amplitudes with any of the 
three methods discussed. 

Bordered Interaction Matrix 

The bordered interaction matrix neglects couplings between all excited states, which for the elastic 
channel leads to a solution that is exact through second order in the optical potential (ref. 8). In this 
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section we consider solutions to equation (17) for a bordered interaction matrix of the form 

- 
X =  

where 

Xopt XO0,Ol XO0,Ol XO0,ll . . . 

0 . . .  xo1,oo Xopt 0 

Xl0,OO 0 Xopt 0 . * 

x11,oo 0 0 Xopt . - - 

Xopt = xoo,oo (33) 

Here the density of the excited nuclear medium is taken to be approximately the same as the ground 
state. The validity of this approximation should increase with mass number and has been estimated 
to introduce an error of approximately 15 percent for 4He and 2.5 percent for l60 (ref. 8). 

In appendix B we find the characteristic equation for a matrix of rank N of the bordered form, 
from which we arrive at the following equation: 

A direct application of the Cayley-Hamilton theorem allows us to obtain analytic expressions for all 
scattering amplitudes. Define 

r2 = C X00,np Xnp,OO (35) 
n,p#(O,O) 

and from equation (34) we find 
x2 = 2XoptX + T2 - X:pt 

All higher powers of X may be found in terms of expressions linear in A. For example, 

x3 = [3XZpt + T2] x + 2XoptT2 - 2X:pt 

x4 = [4X:pt + 4xoptr2] x - 3Xipt + T4 + 2x:p,T2 

A5 = kXipt + 1ox:ptT2 + T41 + 4XoptT4 - 4x:pt 
and 

(39) 

By the Cayley-Hamilton theorem, equation (34) must also hold when X is replaced by x. Consider 

e x p ( i Z ) = i + i X - - x  1-2  - -x  i 3  +-x  1, +-x i, +... 
2! 3! 4! 5! 

Substituting from equations (32) and (36) through (39) into equation (40) gives 
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Rearranging terms gives 

) ) ( 2! 4! [exP(ix)]oo,oo = (1 + ixopt - 3 X o p t  - yxopt + * * * 

T2 T4 1 2  i 3  1 - - + - + . . . 

which we recognize as 
[exp(ix)]oo,oo = eaxopt cos T 

Similarly 

1 2  1 2  i 3  i 
bP(ix)loo,np = iXO0,np 1 + ixopt - gxopt - jjT - -Xopt 3! - sXop tT2  

1 1 2 2  1 + 4!X:Pt + -xoptT2 + -T4 + . . 4! 5!  

and rearranging terms gives 

11 ) ( 3! 5!  
T2 T4 

1 - - + - + . . * 1 2  i 3  
[exP(ix)]oo,np = ixoopp 1 + ixopt - -Xopt - gxopt + * * * (( 2! 

which we recognize as 
. sin” 

[exP(x)loo,np = iX00,np ezxopt - T 

From equation (17), we now identify the scattering amplitudes as 

-ik 
27r 

felas(q) = - 1 e-iqb {eiXopt cos T - I} d2b 

and 

In reference 8 analogous results have been obtained by using the method of similarity transformation. 
is not normal, this method is applicable because not all eigenvectors are needed We note that although 

to obtain equations (47) and (48). From the form of the characteristic equation (see appendix B), 

(Xopt - [(Xopt - A)2 - T2] = 0 (49) 

We recognize the eigenvalues of X as 

1 A 1  = Xopt + T 
A2 = Xopt 

AN-1 = Xopt 

AN = Xopt - 

It is then straightforward to obtain equations (43) and (46) with Sylvester’s theorem but tedious to 
generalize to arbitrary rank N .  

We note that the coherent and DWBA approximations are recovered from equations (47) and (48), 
respectively, in the limit of small T. Also, in general, the function ‘Y’ will have a dependence on the 
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azimuthal angle &, (fig. l), such that a numerical integration over this angle will be required for the 
second-order solutions. 

The function Y as given in equation (35) is directly related to the pair correlation function. This 
can be seen by substitution of equation (A9) into equation (35), 

From reference 12, we have the 

M 

following sum rule on the form factors 

where A is the mass number of the nucleus in question and Coo(q, q’) is the Fourier transform of the 
pair correlation function. Analytic models for Coo(q, q’) are under investigation. In the next section 
we consider a numerical study of long-range correlations involving partial summation of the infinite 
summation that appears in equation (51) for 12C. 

Finally, we note that the first- and second-order solutions to the eikonal coupled-channel scattering 
amplitudes were found by approximating the form of x. We expect that higher order solutions, though 
more difficult, could be found by approximating the form of higher powers of E. 

Physical Inputs 
As a numerical study, we compare the first- and second-order eikonal coupled-channel solutions for 

p on 12C and 4He on 12C scattering. The 2+ at 4.65 MeV, O+ at 7.66 MeV, 3- at 9.65 MeV, and 4+ 
at 14.1 MeV excited states of 12C are considered. An advantage of the bordered interaction matrix is 
that the eikonal phase matrix elements may be obtained through knowledge of form factors measured 
in electron scattering experiments, so that no excited state wave functions are needed as inputs. This 
would not be true for couplings between the off-diagonal elements. The charge form factors for the 
ground and first three excited states have been parameterized previously (refs. 13 and 14) in the form 

where the parameters B,  C, d,  and rn are listed in table I. Table I also lists the form factor for excitation 
of the 4+ state at 14.1 MeV of 12C which we have parameterized to the data of reference 15. 

The matter form factors are obtained from the charge form factors in the following manner (ref. 16) 

where Fp(q) is the proton charge form factor given by 

with rp = 0.87 fm, and Fcm(q) is a center-of-mass correction of the form 



with 

where < r2 > is the root-mean-square radius of the nucleus. For the ground state of 4He, we use the 
parameterization of reference 17, 

where C1, C2, dl,  and d2 are listed in table I. 
The two-body amplitude is assumed to contain only a central piece of the usual form (ref. 2) 

where the energy-dependent parameters o ( e ) ,  .(e) and B ( e )  are taken from reference 18 and given in 
table 11. 

The Gaussian forms for the form factors and two-body amplitude assumed in our calculation allow us 
to obtain analytic solutions for all eikonal phase matrix elements needed as inputs for our calculations. 
All integrals needed are of the form listed in appendix C. 

Results and Discussion 
The first- and second-order scattering solutions and experimental data for elastic and inelastic 

scattering of p on 12C at 800 MeV (ref. 19) and 1000 MeV (ref. 20) and for 4He on 12C at 340A MeV 
(ref. 21) are shown in figures 2 through 12. For p-12C elastic scattering (figs. 2 and 6), the coherent 
approximation (dashed line) and bordered matrix (solid line) results are nearly identical in the region of 
the forward peak where single scattering dominates. We include Coulomb effects only in an approximate 
way assuming a point Coulomb interaction. A more exact treatment is needed to completely fill in the 
first minimum. (See, for example, refs. 21 and 22.) Here spin effects may also be important (refs. 17 
and 23). The effect of coupling the elastic channel to low-lying excited states is seen in the second 
maximum (figs. 2 and 6) where the bordered matrix agrees well, whereas the coherent approximation 
underestimates the data both at 800 and 1000 MeV. The sensitivity to the number of channels included 
in the second-order calculations can be seen in figure 7 where the dashed line includes only the 2+ state; 
the long-dash-short-dash line, the 2+ and O+ states; and the solid line, the 2+, O', 3-, and 4+ states. 
At larger angles, agreement with the data is poor. Here the validity of the eikonal approximation is 
suspect, and the momentum transfers being probed are beyond the region where the phenomenological 
fits to the form factors and two-body amplitudes are made. For the second-order solutions, the effects 
of channel truncation, including the neglect of short-range correlations, in the T-function may be more 
important at larger angles. 

Calculations of the excitation of the 2+, O + ,  and 3- excited states of 12C by 800 and 1000 MeV 
protons are shown in figures 3 through 5 and 8 through 10, respectively. The dashed line is the DWBA 
and the solid line is the bordered matrix (second-order) solution. The formalism for the DWBA is given 
in appendix D. For all excited states, the DWBA and bordered matrix give similar results in the region 
of the first and second maxima. We note that although the bordered matrix contains all couplings 
to second order for the elastic channel, the cascades between excited, which are neglected, should be 
considered a second-order effect for inelastic transitions. These cascades would be most important in 
the region of the second maximum. In the region of the third maximum, we do see better agreement 
for the bordered matrix solutions as compared with the DWBA for all transitions considered. 

In figures 11 and 12 we show calculations, respectively, for elastic scattering and excitation of the 
O+ state of 12C for 340A MeV 4He on 12C collisions. The experimental results of reference 21 do 
not report the forward peak with the data beginning at approximately 5'. We do not include any 
correlation effects for 4He in our calculations. The importance of correlations is expected to increase 
for the lightest nuclei (ref. 24). 

In table I11 we list total cross sections for all channels considered for p-12C scattering at 340, 800, 
and 1000 MeV. The total of the cross sections is calculated by the optical theorem, and the reaction 
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cross section is taken as the difference between the total and total elastic cross sections. The first- 
and second-order results are nearly the same for all channels. This agreement is expected because our 
angular distributions show almost complete agreement between the two solutions in the forward angles 
where most of the cross section occurs. In table 111 we also sum the cross sections for the bound-excited 
(BE) states calculated, a(BE). We note that a(BE) represents only a small fraction, < 5  percent, of the 
total reaction cross section, which is an indication that the neglect of the bound excited states in the 
abrasion model (ref. 6) is a good approximation, although the importance of the giant dipole resonance 
state should be estimated. 

Concluding Remarks 
We have presented several approaches for solving the eikonal form of the coupled-channel scattering 

amplitudes. Analytic forms for second-order solutions have been obtained, and their relationship to 
the pair correlation function established. Improved agreement with experimental results for p-12C 
scattering is seen for the second-order solutions in comparison with the coherent approximation and 
the distorted wave Born approximation. Second-order effects are seen to make a negligible contribution 
to total channel cross sections. Future work should involve inclusion of spin effects and the development 
of analytic models for the pair correlation function. 

NASA Langley Research Center 
Hampton, VA 23665-5225 
September 1, 1988 



Appendix A 
Eikonal Phase Matrix Elements in Terms of Momentum Space Representations 

In this appendix, we reexpress the real space eikonal phase matrix elements in terms of the 
momentum space representations of the transition densities and two-body amplitude. This allows 
us to explicitly show the complex dependence of these matrix elements. 

If projectile and target total angular momentum transfer numbers are defined as 

and total projection angular momentum transfer numbers are defined as 

we introduce the projectile and target transition form factors F J ~ M ~  and F J ~ M ~ ,  respectively, given 
by 

p J p M p ( x + Y + t ) = -  1 d q e - i ( X + Y + € ) ' q  FJ P P  M (9) (A3) 
1 

w3 

and the momentum-space representation of the two-body amplitude given by 

into equation (26) to find 

In the eikonal approximation, the parallel momentum transfer is assumed to be negligible. Letting 

such that q l  and b lie in the s-y plane (fig. 1) and assuming the 411 dependence of the form factors 
and two-body amplitude approaches zero faster than exp(-iqll z )  gives 

, ,  

which reduces to 

where q1 has been replaced by q. Next, we introduce reduced form factors F J ( q )  defined by 



where 

and where PJM represents the associated Legendre polynomials. From figure 1 we can see that 6, = $, 
and using the identity (ref. 25), 

0 (J + M = odd) 

(J + M = even) 
( - l ) (J-M'P(J  + M - l)!! 

(J - M ) ! !  

then defining coupling coefficients as 

( J  - M ) !  (J + M - l)!! 
B J M  = \i ( J + M ) !  (J - M ) ! !  

gives 

Substituting equations (A10) and (A14) into equation (A9) yields 

and 
J- ,  = (-l)"Jn 

where Jn, the Bessel function of order n, gives the final result as follows: 

The complex dependence of the eikonal phase matrix elements is now explicitly shown in equation (A19) 
to occur in the exponential phase and in any complex dependence in t ( q ) .  We note, also, that 
equation (A19) offers considerable computational advantage over equation (26). 
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Appendix B 
Characteristic Equation for Bordered Matrix 

In this appendix, we prove that a bordered matrix of the form 

b l , l  bl ,2 b1,3 * bl,N 
b2,1 d 0 * * . 0 
b3,1 0 d . . 0 . . . .  

. . . .  
I . . .  

bN,1 0 0 - a *  d 

of rank N has a characteristic equation of the form 

(d  - A)N-2 

where the eigenvalues of BN are A. 
Proof: To prove that equation (B2) holds, we consider the cofactor expansion of the characteristic 

determinant of BN and use induction with respect to rank. The result is easily seen to be true by 
inspection for small N so our proof is complete. 

The characteristic determinant of BN is written 

lBNl= (BN - xi[ = o (B3) 

A determinant can be expanded in terms of the cofactor matrices of any of its rows or columns. 
Choosing the first row of DN to make the cofactor expansion gives 

N 
1DN I = 4 , e  &,e (B4) 

IBNI = 4 , e  P 1 , e I  (B5) 

e=i  
or 

N 

e= 1 

where 
equation (Bl) is used, we find 

is the cofactor corresponding to the element dl,e, and IBl,el is the related determinant. If 

By assumption we must have 

such that 

in order for equation (B2) to be correct. 
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Consider a bordered matrix of the form given by equation (Bl) of rank N + 1. We have 

IPi ,21  = 

On comparison of equations (B7) and (B9), we see that to complete the proof we must show 

b2,1 d -X  0 * e *  0 0 
b3,l 0 d -X  * * 0 0 
b4,l 0 0 0 0 . . .  

. . .  : . . .  

. . .  
bN,1 0 0 . . .  d-X 0 

0 . . .  0 d-X bN+l,l 0 

is easily seen by inspection. Consider 

P 1 , 2 I  = 

and 

0 

b q  0 d - X * * .  0 

0 . . .  b2,l 0 
b 3 , ~  d -X  0 * 1 * 0 

. . .  

. . .  

. . .  
bl,N 0 0 . . .  d - X  



therefore, 
lEi ,2l  = (d  = A)P1,21 

IB\,N+ll = 

A similar result that holds for lDi,31 through \E\,N~ is easily seen by inspection. Finally, consider 

0 0  

0 . . .  0 0  

b2,1 d - A  0 a . 0  

b3,l O d - A . V . 0  0 
b4,l 0 

. . . .  : . . . .  

. . . .  
0 . . .  0 ( d - A )  
0 . . .  0 0  

bN,1 
bN+1,1 

Thus our proof is complete. 
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Appendix C 
Analytic Forms for G J M  Integrals 

In this appendix, we tabulate analytic forms for the functions GJM ( q b )  as defined in equation (A20) 
when Gaussians are used for form factors and the two-body amplitude. All integrals tabulated may be 
generated from the integral (ref. 26), 

where p is a positive integer by differentiation with respect to the parameter a. Defining 

00 J t  = A qp e-ag2 Ja(qb) dq 

these integrals are given as follows: 

J : = - e  -b2/4a 
2a 

J o - 7  ( ::) b2/4a 2a 

J ; = ?  I - - + -  - b2 /4a 

J t = G e  -b2/4a 

J 1 - 7  ( 1:) b2/4a 2a 

J 1 - 7  6 - ( 3 - - + -  5b2 b4 ) e-b2/4a 

3 - I-- e-  

2a 32a3 

4 - I-- e-  

2a 4a 32a2 
2 

8a 
b2 

3 - -b2/4a 
J2 - T e  

J i  = 8a (3 - !!) e-b2/4a 

J 4  - - b3 -b2/4a 
- 16a4 e 

b2 /4a 

5 b4 -b2/4a J4 = - 
32a5 e 
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Appendix D 
Distorted Wave Born Approximation 

In this appendix, we obtain the form of the distorted wave Born approximation (DWBA) that 
follows from use of equation (AM) for the eikonal phase matrix elements. From references 2 and 3, the 
DWBA for the scattering amplitude has the following form in the eikonal approximated, optical model 
formalism: 

k 
f J p M p , J T M T ( q )  - 2n / eiXopt(b) XJpMp,JTMT (b) d2b (D1) 

where Xopt(b) is the elastic element Xoo,oo(b). Substitution of equation (A19) into equation (Dl) gives 

Then with 
q b = qb cos ( 4 b  - 4*) 

and the identities (A17) and (A18), we find 

where we have dropped an inconsequential phase. The form of the angular distribution for a discrete 
projectile- target transit ion then follows as 

where P; and PF are the initial and final center-of-mass momenta of the projectile, respectively. Values 
for the coupling coefficients, for small values of J ,  are listed in table IV. 
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Table I. Form Factors 

(a) I2c 

E ,  MeV J P  m B 
0 O+ 0 1.0 
4.43 2+ 2 0.24 

9.67 3- 3 0.134 
14.1 4' 4 0.00392 

7.65 O+ 2 0.167 

C d, fm-2 
0.296 0.7 
0.13 0.57 
0 0.99 
0 0.77 
0 0.64 

i . 

800 
1000 

(b) 4He 

0.20 4.3 -0.056 
0.21 4.3 -0.26 

c1 = 1.098 
c2 = 0.098 
dl =0.72 
d2 = 3.6 

Table 11. Two-Body Amplitude Parameters 

[Isospin averaged parameters of reference 181 
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Table 111. Total Channel Cross Sections for p on 12C 

Coherent 
103.5 

7.5 
4.3 
0.4 
2.6 
0.1 

223.8 
327.3 

~ 

Cross section 
a(EL), mb . . . . . 
a(BE), mb . . . . 
a(2+) ,mb . . . . . 
a(OS), mb . . . . . 
0(3-),mb . . . . . 
0(4+),mb . . . . . 
a(re), mb . . . . . 
a(tot), mb . . . . . 

Bordered 
102.1 

7.5 
4.3 
0.4 
2.6 
0.1 

223.0 
325.1 

q a b  = 
Coherent 

54.1 
3.5 
2.2 
0.3 
1.0 
0.03 

220.9 
275.0 

3.5 
2.2 
0.3 
1.0 
0.03 

220.3 
273.8 

7.1 7.1 
4.1 4.1 
0.4 0.4 
2.5 2.5 
0.1 0.1 

238.3 237.2 
330.8 328.5 

Table IV. Values for Coupled Coefficients 

J 
0 
1 
2 
2 
3 
3 

M BJM* 

1 1 / f i  
0 112 
2 m 
1 d m  
3 m 

0 1 

4 
4 
4 

~~ 1 3 3 1  
1128 
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X 

Figure 1. Orientation of momentum vector and impact parameter vector in scattering plane. 
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Figure 2. Theoretical and experimental (ref. 19) elastic angular distributions for 800 MeV p-12C 
scattering. 
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Figure 3. Theoretical and experimental (ref. 19) inelastic angular distributions for excitation of 2+ state 
in 12C in 800 MeV p-12C scattering. 
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Figure 4. Theoretical and experimental (ref. 19) inelastic angular distributions for excitation of O+ state 
of l2C. 
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Figure 5.  Theoretical and experimental (ref. 19) inelastic angular distributions for excitation of 3- state 
of 12c. 

23 



daIdR, 
mblsr 

0 

- Second-order calculation 
First-order calculation _ _ _ _  

0 Experimental data 

101 , o o ~  

lo-'  
t 

L 

I I I I  I 1 I I I I I I 1  
10-3; 1 6 10 14 18 22 26 30 

ecm 
Figure 6. Theoretical and experimental (ref. 20) elastic angular distributions for 1040 MeV p l 2 C  

scattering. 
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Figure 7. Effect of channel truncation in second-order calculations for 1040 MeV p-12C elastic scattering. 
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Figure 8. Theoretical and experimental (ref. 20) inelastic angular distributions for excitation of 2' state 
in 12C in 1040 MeV p-12C scattering. 
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Figure 9. Theoretical and experimental (ref. 20) inelastic angular distributions for excitation of O+ state 
in 12C in 1040 MeV p l 2 C  scattering. 
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Figure 10. Theoretical and experimental (ref. 20) inelastic angular distributions for excitation 

in 12C in 1040 MeV p-12C scattering. 
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Figure 11. Theoretical and experimental (ref. 21) elastic angular distributions for 340A MeV d 2 C  
scattering. 
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Figure 12. Theoretical and experimental (ref. 20) inelastic angular distributions for excitation of O+ state 
in 12C in 340A MeV d 2 C  scattering. 
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